Minggu, 21 November 2010

How to Make Hologram

Simple Holography
The Easiest Way to Make Holograms

By T. H. Jeong, Raymond Ro, Riley Aumiller (Lake Forest College)
and Misashi Iwasaki (Kyoto Institute of Technology)
with contributions from Jeff Blythe (University of Cambridge)
Edited by Alec Jeong
Copyright © 1996-2009


1. INTRODUCTION

"Everything should be made as simple as possible, but not simpler” - Albert Einstein

We attempt to follow this dictum so you can make holograms easily. The procedures we propose herein are as simple as it is physically possible. In the process, we make holography not only as simple as possible, but safer, less expensive, and more accessible to young people.


Most of the essential items described in this article can be found in Integraf's holography kits or are available separately. The kits provide materials for you to make many kinds of holograms, including reflection holograms and transmission holograms.


2. THE LASER

The figure below shows a Class IIIa diode laser with an output of 3 to 4 mW when operated by 3.0 v dc. If the power is supplied by batteries, its red light of wavelength 650 nm achieves a coherence length exceeding 1 m after a warm-up period of a few minutes. The traditional helium-neon laser, on the other hand, operates on dangerously high voltages, is prone to breakage, has a shorter shelf life, and a coherence length of approximately 30 cm.

Unlike many laser diodes and laser pointers, the laser shown below and in our catalog has a stabilized frequency output (a must for holography), good coherence length (also a must), and a removable collimating lens. With the spring-loaded collimating lens mounted on the laser, the output beam can be adjusted to focus at any arbitrary distance.


Laser



To make holograms, we'll actually take off the collimating lens. . . shining this pure beam right on to the holographic plate and object.







To make holograms, we'll actually take off the collimating lens. Without the lens, the direct output from the laser spreads out with a highly eccentric elliptical profile. Since the beam encounters no external optical elements, the light has no mottled patterns caused by interference and diffractions, and appears perfectly clean. In other words, we'll be shining this pure beam right on to the holographic plate and object.

The responsible parent or teacher is advised to remove the lens and the small tension spring before allowing the student to use the laser. This way, the power density received by human eyes will not exceed that received when looking at an ordinary grocery store laser scanner. When the laser is not in use, replace the collimating lens (with or without the tension spring). This helps ensure that you won't lose the lens and, more importantly, will help keep dust out of the laser.

If you are using your own "laser pointer" for making holograms, know many laser pointers and diodes do not have frequency stabilizing circuits (like the one above), which is required for holography. Moreover, since most laser pointers do not have a removable collimating lens, you must buy a special optical lens to spread the beam. With two lenses (four lens surfaces) through which the laser beam must shine, there may be many objectionable patterns on the resulting beam due to the four lens surfaces and the dirt on them.


3. STABLE SUPPORT FOR LASER

An excellent support for such a small laser is a wooden clothespin, as shown below. For mechanical stability and maneuverability, the clothespin holding the laser is stuck into a cup of sand, salt, or sugar (not pepper!). On the other hand, for schools with available laboratory hardware, the clothespin can be glued to a rod and mounted on a lab stand with a right-angle clamp.

Wooden Clothespin
The wooden clothespin offers another advantage. It being a thermal insulator, the laser will reach thermal, electrical, and frequency stability a few minutes after it is turned on, assuming batteries are used as its power source. An alternative support would be a rubber-tipped thermometer holder.
 
 
 
 
 
4. REFLECTION HOLOGRAM BY “CONTACT COPY” METHOD
 
The “white light reflection hologram” is the simplest to make. We advocate the “contact copy” method, whereby you lean the holographic plate (holoplate) directly against the object during exposure. As long as there is no relative movement between the object and the plate, no vibration isolation is needed.
 
4.1 Supplies
 
You will need the diode laser discussed above, a supply of Slavich PFG-03M 2.5 x 2.5 inch plates (63mm x 63mm), and a JD-4 processing kit (or PFG-01 plates with JD-2). All of these items are included in the HOLOKITTM Holography Kits that can be purchased from Integraf's catalog, and will make both reflection and transmission holograms. Detailed instructions accompany the the kit.
 
Though slightly trickier, one can also use PFG-01 holographic film sheets sandwiched and clipped between two glass plates instead of using holographic plates. Develop with JD-2. For the instructions below, substitute the properly sandwiched film sheet for the holographic glass plates. See our article on how to use holographic film sheets for important details.
 
4.2 Preparing The Object
 
The choice and preparation of the object is crucial: (1) it should be made of a solid material such as a quarter or dime (no furry or fabrics); (2) it must appear bright when illuminated with the red laser light; and (3) it must not move or deform.
If it's your first time making a hologram, try to avoid choosing objects that are fabric or fury (e.g. teddy bears) because these objects deform easily. Also avoid large plastic objects as they tend to expand and contract with the slightest change in temperature (even from the heat of your fingers!). For best results, try metal or porcelain objects that can be easily illuminated with laser light and are no larger than the size of the holoplate, such as coins.

If there is any doubt about potential movement, you could glue the object to a stable wood or metal platform where the hologram will be made. The picture below shows a more elaborate, but optional, way of mounting the object. The object is glued to a small platform and held from behind by a metal block to prevent the object from leaning back. The platform has three round-headed screws from the bottom for three-point support. The upper parts of two of the screws can be used as stops when the holographic plate is placed in front of the object for exposure, preventing any slippage.

Wood Stock

Holography Tip
If your object or holographic film plate moves even 1/1000th of an inch during exposure, your hologram will not likely turn out. So avoid talking, music, noise, walking around, air currents, creaky floors, soft objects, temperature changes to the object . . . . What other things can you think of that might cause tiny movements or vibration?



Another way to dampen movement or vibration is by placing the object on a computer mousepad, or even better, a tray of sand, salt, sugar (or even kitty litter).

Prepare the chemical processing solutions and layout the processing trays as directed by the instructions that accompany the JD-4 (or JD-2) kits. Although our chemicals solutions are termed non-volatile, chemicals evaporate over time and may cause nose and throat irritations. Use the chemicals in a ventilated area.

It is not necessary to have a completely dark room. However, the room should be sufficiently dark so that one cannot read in it. Use a standard night-light if necessary so that you can move about safely. Block any direct light from reaching the holography system.

4.3. Making a Reflection Hologram

Carefully follow these steps to align and expose the hologram to the laser:

Basic Setup

  1. Adjust the laser in its holder so that the beam spreads out horizontally.
  2. Place the object at a distance of 35 to 40 cm from the laser.
  3. Place a white card behind the object and adjust the laser while looking at the shadow on the card. Adjust the position of the laser until the object is optimally illuminated. Then remove the white card.
  4. Place an opaque cardboard near the laser to block the light from reaching the object. This will serve like the shutter of a camera.
  5. Remove a holographic plate from its container (in the darkest part of the room), and close the container.
  6. Lean the holographic plate on the object, making certain it will not slip or move; the emulsion (sticky side) should touch the object.
  7. Allow 10 seconds for the object to settle, and tell everyone in the room to hold still.
  8. Now, lift the “shutter” slightly off the table while still blocking the laser light, and wait 2 seconds for the vibration to subside.
  9. Then, lift the shutter all the way up to expose the holographic plate and object for 10 seconds (5 seconds minimum, longer is OK up to 40 seconds). Then, block the light again.
  10. Finally, process the exposed holographic plate according to instructions that accompany the JD-4 (or JD-2 if you are using PFG-01 plates or film sheets).
  11. Optionally, place your holographic plate in a solution of Photoflo for 20 to 30 seconds. Photoflo is a wetting agent that helps holograms turn out cleaner and clearer. It reduces streaks and promotes more uniform and quicker drying. While PhotoFlo is not required to make a hologram, it does help them look better.
After the hologram is thoroughly dried, it can be viewed with a point source of incandescent light such as that from a projector, flashlight, or the sun. You cannot use diffused light sources such as frosted bulbs and florescent lamps. For best results, spray paint the emulsion (sticky) side with a diffuse black paint. This protects the emulsion and provides a dark background to enhance the visibility of the image.

5. MAKING A PANORAMIC TRANSMISSION HOLOGRAM

Transmission holograms offer many advantages over reflection holograms. For example: (1) the object or scene can be much bigger than the holographic plate; (2) when illuminated with the diode laser, the entire virtual image is sharp; (3) the real image can be projected onto a screen using a laser pointer; (4) it is more tolerant of vibration during recording, so that film, instead of the more expensive plates, can be used; and (5) two or more “channels” of independent images can be recorded on the same plate or film. For example, after the first exposure, turn the plate or film upside down and exposure again with a different object. Each exposure should be one-half the duration of one full exposure.

The figure below shows a “sandbox” system set up for recording a panoramic transmission hologram on a strip of film with approximate dimensions of 4"x5" (102mm x 127mm). The film is Slavich PFG-01 (which must be processed with JD-2 or JD-3) and can be cut (in a darkened room, of course)into any smaller sizes using scissors or paper cutter. One can also use a holographic plate. PFG-01 and PFG-03M both make great holograms, but PFG-01 is especially good for transmission holograms.

The film is clamped between two larger glass plates and stuck into the sand. One side of the spreading beam serves as reference beam and the rest illuminates the object(s). Since air is trapped inside the glass plates and escapes slowly, the film sandwich will have movement over several minutes. It is advisable to squeeze out the air by pressing the sandwich between two flat surfaces. Alternatively, just place the sandwich in position and wait 5 to 10 minutes before exposure. Cover the film and keep any stray light from fogging it during this time.

The exposure time is approximately 30 to 60 second (PFG-01). The processing procedure for the film, using JD-2 or JD-3, in accordance with instructions that accompany the kits.

For more details on making transmission holograms, see our article "How to Make Transmission Holograms".



Lab Setup
6. CONCLUSION

We have presented the simplest and least expensive method of making holograms. This type of project can be taught as art, craft, or science and technology in the elementary schools, before students have decided on their future occupation. Once interested, students will be induced to learn all the fundamental principles of optics and photonics: reflection, refraction, interference, diffraction, polarization, coherence, and scattering.

7. ADDITIONAL INFORMATION

USE OF THE WHITE CARDBOARD
The white cardboard placed behind the object is for observing the silhouette to ensure that the object is illuminated as evenly as possible. Assuming that this cardboard is opaque, you can use it as the “shutter” by moving it to a position between the laser and the object (see step 4 in Section 4.3).

LASER PREPARATION
Make sure the laser has been warmed up for at least 5 minutes before any holograms are exposed. Minimize any disturbance to the laser (do not touch it or even allow moving air to cross it) which may cause the outputs to become unstable.

HOW TO OBSERVE THE IMAGE IN THE FINISHED HOLOGRAMS
To view your hologram, you need to make sure you're using the correct light source from the appropriate angle. See our article "How to View Your First Hologram" for details.

SETTING UP A SIMPLE LAB IN A CLASSROOM
When setting up your lab in a classroom for multiple students, you may want into account some of the practical considerations such as how you set up your "assembly line" for students to expose and develop their holograms. See our article "Teaching Holography in Classrooms" for details.

Source: http://www.holokits.com/a-simple_holography.htm

Jumat, 19 November 2010

Hologafi

1. Definisi

Holografi adalah teknik yang memungkinkan cahaya dari suatu benda yang tersebar direkam dan kemudian direkonstruksi sehingga objek seolah-olah berada pada posisi yang relatif sama dengan media rekaman yang direkam. Gambar berubah sesuai dengan posisi dan orientasi dari perubahan sistem pandangan dalam cara yang sama seperti saat objek itu masih ada, sehingga gambar yang direkam akan muncul secara tiga dimensi (3D) yang biasa disebut dengan hologram. Teknologi perekaman citra tiga dimensi ini menggunakan sinar murni (seperti laser). Setelah pemrosesan, akan terlihat penampakan benda yang berbeda-beda dari berbagai sudut. Hologram tradisional, pembuatannya menggunakan proses kimia yang rumit. Pada hologram modern, penampakan dapat dilihat pada pencahayaan yang biasa dan dapat pula menunjukkan citra tiga dimensi benda besar yang bergerak dengan pewarnaan yang lengkap.

2. Sejarah

Pada tahun 1940-an, Dr. Dennis Gabor, seorang fisikawan Hungaria, menemukan teknik holografi. Berkat penemuannya tersebut, ia dianugerahi penghargaan Nobel pada tahun 1971. Hasil temuaannya menjadikan ia sebagai perintis, bapak, dan sekaligus pencipta holografi. Sayangnya, perkembangan bidang ini berjalan lambat hingga tahun 1960-an. Akhirnya, perkembangan holografi mulai bergerak lagi dengan adanya perkembangan dari teknologi laser.

Dr. Dennis Gabor

3. Hologram

Hologram adalah produk dari teknologi holografi. Hologram terbentuk dari perpaduan dua sinar cahaya yang koheren dan dalam bentuk mikroskopik. Hologram bertindak sebagai gudang informasi optik. Informasi-informasi optik itu kemudian akan membentuk suatu gambar, pemandangan, atau adegan.
Hologram merupakan jelmaan dari gudang informasi (information storage) yang mutakhir. Kelebihan hologram ialah ia mampu menyimpan informasi, yang di dalamnya memuat objek-objek 3 dimensi(3D). Tidak hanya objek-objek yang biasa terdapat di foto atau gambar pada umumnya. Hal itu disebabkan prinsip kerja hologram tidak sesederhana lensa fotografi. Hologram menggunakan prinsip-prinsip difraksi dan interferensi, yang merupakan bagian dari fenomena gelombang.

a. Karakteristik Hologram

Hologram, memiliki karakteristik yang unik. Beberapa diantaranya yaitu:
  • Cahaya, yang sampai ke mata pengamat, yang berasal dari gambar yang direkonstruksi dari sebuah hologram adalah sama dengan yang apabila berasal dari objek aslinya. Seseorang, dalam melihat gambar hologram, dapat melihat kedalaman, paralaks dan berbagai perspektif berbeda seperti yang ada pada skema pemandangan yang sebenarnya.
  • Hologram dari suatu objek yang tersebar dapat direkonstruksi dari bagian kecil hologram. jika sebuah hologram pecah berkeping-keping, masing-masing bagian dapat digunakan untuk mereproduksi lagi keseluruhan gambar. Walau bagaimanapun, penyusutan dari ukuran hologram, dapat menyebabkan penurunan perspektif dari gambar, resolusi, dan tingkat kecerahan dari gambar.
  • Dari sebuah hologram dapat direkonstruksi dua jenis gambar, biasanya gambar nyata (pseudoscopic) dan gambar maya (orthoscopic)
  • Sebuah hologram tabung dapat memberikan pandangan 360 derajat dari objek
  • Lebih dari satu gambar independen yang dapat disimpan dalam satu pelat fotografi yang sama yang dapat dilihat dari satu per satu dalam satu kesempatan.


b. Penyimpangan Hologram

Hologram dapat menderita penyimpangan yang disebabkan oleh konstruksi satu ke rekonstruksi berikutnya serta oleh ketidaksesuaian referensi dan rekonstruksi sinar. Penyimpangan pada hologram kromatik dan nonkromatik, keduanya sama-sama merupakan penyimpangan yang serius walaupun hanya sebuah penyimpangan dari geometri perekaman yang ada pada rekonstruksi geometri.


c. Gambar Orthoscopic dan Pseudoscopic

Sebuah hologram dapat merekonstruksi dua gambar, yang nyata dan maya (replika dari objek). Namun, dua gambar tersebut terbedakan dalam tampilannya di mata pengamat. Gambar maya diproduksi dengan posisi yang sama dengan objek dan memiliki tampilan yang sama pada kedalaman dan paralaks dengan objek tiga dimensi yang sebenarnya. Gambar maya terlihat seolah-olah pengamat melihat objek asli melalui jendela yang ditentukan oleh ukuran dari hologram. Gambar tersebut dikenal sebagai gambar orthoscopic Gambar nyata, juga terbentuk dengan jarak yang sama dari hologram, tapi berada didepannya serta kedalaman gambarnya terbalik. Hal ini disebabkan oleh fakta bahwa titik-titik yang bersesuaian pada kedua gambar (nyata dan maya) terletak pada jarak yang sama dari hologram. Gambar nyata ini dikenal sebagai pseudoscopic. Gambar ini sangat tidak nyaman untuk dilihat karena memang kita tidak terbiasa melihat gambar terbalik dalam kehidupan normal. Gambar tersebut tidak dapat diubah dengan tekni-teknik optika sampai baru-baru ini. Kini, sudah memungkinkan untuk mengkonjugasikan muka gelombang dengan menggunakan teknik konjugasi fase optik. Gelombang muka ini memiliki aplikasi yang potensial dalam mengoreksi efek dari penyimpangan media pada pencitraan optik.
Sebuah hologram yang terekam oleh lensa atau sebuah cermin cekung, dapat menghasilkan sebuah bayangan nyata orthoscopic dari objek. Bayangan nyata orthoscopic dari objek ini juga dapat diciptakan dengan cara merekam dua hologram secara berturut-turut. Tahap pertama, hologram utama direkam dengan menggunakan sinar acuan. Hologram ini, saat direkonstruksi oleh sinar, menghasilkan sebuah gambar maya dan gambar nyata dengan pembesaran unit. Kemudian, hologram ini direkam dengan menggunakan gambar nyata dari hologram utama sebagai sinar objek. Pada saat hologram ini sudah terekonstruksi, akan menghasilkan bayangan maya pseudoscopic dan bayangan nyata orthoscopic.

Hologram

d. Klasifikasi Hologram

Hologram, dapat diklasifikasikan dalam beberapa cara tergantung pada ketebalan, metode perekaman, metode rekonstruksi dan lain sebagainya.


  • Klasifikasi Berdasarkan Amplitudo dan Fase Hologram
Sebuah hologram, tipe penyerapannya ada yang menghasilkan perubahan pada amplitudo dari sinar rekonstruksinya. Jenis fase dari hologram ini menghasilkan fase perubahan pada sinar rekonstruksi dikarenakan variasi dari indeks bias atau ketebalan dari medium. Fase hologram, memiliki keuntungan lebih daripada amplitudo hologram dalam hal pemborosan energi di dalam medium hologram serta efisiensi penguraian yang lebih tinggi. Hologram yang direkam dalam emulsi fotografik merubah baik amplitudo dan fase dari menerangi gelombang. Bentuk dari rencana kerangka perekaman ini tergantung dari fase relatif dari pencampuran sinar. Akibatnya, gelombang yang terekonstruksi terefleksi ke hologram yang sesuai dengan kepadatan perak yang tersimpan dengan variasi amplitudonya sebanding dengan amlpitudo dari objek. Demikian pula dengan fase gelombang rekonstruksi, yang dimodulasikan sebanding dengan fase dari gelombang objek. Jadi, baik amplitudo dan fase dari gelombang objek merupakan reproduksi.


  • Klasifikasi Berdasarkan Ketebalan Hologram
Hologram bisa berbentuk tipis (bidang) atau tebal (isi). Sebuah parameter Q dapat digunakan untuk membedakan antara hologram tipis dan tebal. Sebuah hologram dapat dikatakan tipis apabila Q < 1. Hal ini telah dibuktikan bahwa hologram tipis yang ditambah dengan teori gelombang berlaku untuk nilai Q urutan 1. Jadi, kriteria dari Q tidak selalu cukup. Sebuah hologram mungkin juga disebut tipis jika emulsi ketebalannya lebih rendah dari jarak tepi. Hologram seperti ini menghasilkan beberapa ketentuan (i) ketentuan 0 jika sinar acuan ditransmisikan secara langsung, (ii) ketentuan 1 jika penyebaran menghasilkan bayangan maya, (iii) ketentuan -1 jika penyebaran sama dengan intensitas untuk ketentuan 1 menghasilkan gambar konjugasi, dan (iv) lebih besar dari 1 jika ada penurunan intensitas.
Sebuah hologram yang bervolume (tebal) dapat dikatakan sebagai superposisi dari tiga dimensi rekaman terukur pada kedalaman dari emulsi menurut hukum Bragg. Rencana pengukuran pada volume hologram menghasilkan perubahan maksimal pada indeks bias dan atau indeks penyerapan. Kesimpulan dari hukum Bragg adalah volume hologram merekonstruksi bayangan maya pada posisi asli dari objek jika sinar rekonstruksi bertepatan dengan sinar acuan. Namun, bagaimanapun juga gambar konjugasi dan ketentuan penyebaran yang lebih tinggi tidak termasuk disini.

4. Proses Perekaman Hologram

Holografi, sering disalah konsepsikan sebagai 3D fotografi. Analogi yang lebih baik adalah rekaman suara di mana bidang bunyi dikodekan sedemikian rupa agar di kemudian hari dapat direproduksikan. Dalam holografi, sebagian dari sinar yang tersebar dari objek atau sekumpulan objek jatuh di atas media perekam. Sinar kedua, yang dikenal sebagai sinar acuan, juga menerangi media perekam sehingga terjadi gangguan antara kedua sinar tersebut. Hasil dari bidang cahaya tersebut adalah sebuah pola acak dengan intensitas yang bervariasi yang disebut hologram. Dapat ditunjukkan bahwa jika hologram diterangi oleh sinar acuan asli, sebuah bidang cahaya terdifraksi oleh sinar acuan yang mana identik dengan bidang cahaya yang disebarkan oleh objek atau objek-objek. Dengan demikian, seseorang yang memandang ke hologram tetap dapat ‘melihat’ objek walaupun objek tersebut mungkin sudah tidak ada lagi. Berbagai variasi bahan rekaman yang juga dapat digunakan, termasuk Variasi Film Fotografis.

Keunggulan Hologram

Seperti yang telah dikatakan sebelumnya, kapabilitas hologram melebihi kapabilitas media penyimpanan lainnya. Salah satunya ialah, hologram dapat merekam intensitas cahaya. Dengan kata lain, hologram memiliki informasi tambahan baru dibandingkan media lain.
Secara otomatis dengan adanya rekaman intensitas cahaya, hologram pun mampu untuk memperlihatkan kedalaman (depth). Ketika seseorang melihat ke arah sebuah pohon, ia menggunakan matanya untuk menangkap cahaya dari objek itu. Setelah itu, informasi diolah untuk memperoleh makna mengenai objek tadi. Prinsip ini hampir sama dengan hologram. Hologram menjadi cara yang nyaman untuk menciptakan kembali gelombang cahaya yang sama, yang berasal dari objek yang sebenarnya.
Kemampuan ini sangat menakjubkan. Objek terasa nyata dan hidup dan ia akan terlihat seolah-olah akan ”melompat” dari gambar (scene). Jika pada sebuah foto standar, pemandangan diambil dari satu perspektif saja, maka hologram mematahkan batasan itu. Hologram mampu untuk melihat suatu objek dari berbagai perspektif.

5. Aplikasi Holografi

Aplikasi teknik holografi telah tersebar ke berbagai aspek kehidupan. Holografi memudahkan manusia dalam mengabadikan karya-karya seni dan benda-benda peninggalan sejarah, pembuatan iklan dan film, dan lain sebagainya. Selain itu, aplikasi holografi lain ialah holographic interferometryholographic optical element (HOE), dan holographic memory.

a. Holographic Interferometry

Holographic interferometry adalah aplikasi dari teknologi holografi yang memungkinkan kita untuk membuat replika atau tiruan visual suatu benda, beserta efeknya. Dengan teknik ini, objek akan mengalami dua kali pencahayaan. Sehingga visualisasi suatu benda dapat bervariasi.
Pada proses pencahayaan yang pertama, objek harus dalam keadaan diam, tidak boleh bergerak. Pada proses pencahayaan yang kedua, objek tadi menjadi subjek untuk memberikan bentuk-betuk fisik sesuai dengan wujud asli objek tersebut. Kemudian sepanjang proses tadi, hologram akan melukiskan sejumlah garis, baik garis tepi maupun garis diagonal yang melewati objek. Garis-garis itu kemudian akan menjelma menjadi garis-garis kontur serupa pada sebuah peta. Peta visual ini sangat bergantung pada garis tepi, sebab garis tepi lah yang memberi bentuk-bentuk fisik. Bila terjadi kesalahan pada proses yang pertama, maka hal itu akan mempengaruhi pembuatan peta visualnya.
Holographic interferometry terdiri atas tiga tipe, yaitu :
  • Frozen Fringe
  • Life Fringe
  • Time Averaged
Holographic interferometry sudah banyak digunakan di industri manufaktur. Kegunaannya ialah untuk menginpeksi kerusakan atau kegagalan pada produk. Subjeknya ialah logam dan bahan nonlogam. Material ini digunakan untuk menguji adanya kemungkinan-kemungkinan kerusakan.

b. Holographic Optical Element (HOE)

Holographic optical element ialah salah satu jenis dari elemen optis difraktif. HOE dapat mengganti suatu sistem optik dengan komponen optik ganda, seperti lensa, kaca, [beam splitters], dan prisma. HOE sangat bermanfaat bila terjadi ketidaksesuaian dan ketidakseimbangan komponen optik suatu benda.
Kini hadir teknologi DOE (Diffractive Optical Element) sebagai kelanjutan dari HOE. Pada DOE, gelombang cahaya yang datang tidak lagi dibengkokan, melainkan dipecah menjadi puluhan, ratusan, atau bahkan ribuan gelombang. Gelombang-gelombang tadi nantinya akan meyatu kembali dan membentuk sebuah gelombang lengkap yang baru.
Aplikasi HOE dan DOE antara lain sebagai berikut :
  • Sistem komunikasi dengan media optik
  • CD (cakram kompak)
  • Aplikasi-aplikasi arsitektural (seni bangunan)
  • Finger print sensor (sensor sidik jari)
  • Proses pengolahan informasi

c. Holographic Memory

Perkembangan teknologi holografi turut merambah ke sistem penyimpanan data. Hal ini dimaksudkan untuk menciptakan media penyimpanan data dengan kapasitas yang lebih besar. Media-media penyimpanan yang mengadopsi prinsip-prinsip holografis disebut dengan holographic memory.
Pada dasarnya, teknologi holographic memory memanfaatkan cahaya untuk menyimpan dan membaca kembali data atau informasi. Sinar Laser (singkatan dari Light Amplification by Stimulated Emission of Radiation) yang bersifat monokromatik dan koheren dilewatkan pada sebuah alat yang disebut ‘beam splitter’. Splitter ini ‘memecah’ sinar LASER menjadi dua, yang pertama disebut sinar sinyal atau sinar tujuan, yang kedua disebut sinar acuan. Disebut sinar tujuan karena sinar ini membawa kode informasi atau obyek yang akan disimpan. Disebut sinar acuan karena merupakan sinar yang dirancang sedemikian rupa, sehingga mudah dan sederhana untuk direproduksi karena digunakan sebagai referensi.
Salah satu contoh dari holographic memory ialah kepingan holografis. Para peneliti tengah berusaha mengembangkan kepingan (CD) yang memiliki muatan penyimpanan holografis, sehingga dapat menyimpan informasi dengan ukuran terabit. Hal ini dikarenakan pengepakan data menjadi lebih mapat dibandingkan teknologi optis konvensional seperti yang digunakan pada DVD dan Blue-Ray. Bayangkan satu keping cakram optis, dengan ketebalan cakram 1,5mm, mampu menyimpan data sebesar 200 GB.
Holographic memory memiliki beberapa keunggulan dibandingkan media penyimpanan lain, antara lain sebagai berikut :
  • Holographic memory dapat menyimpan data 2 dimensi, 3 dimensi, dan juga data digital.
  • Kapasitas penyimpanan data lebih besar, dapat mencapai 27 kali lebih besar dari kapasitas DVD yang kita pakai saat ini.
  • Proses pembacaan data lebih cepat, yakni 25 kali lebih cepat daripada DVD.

Sumber: http://id.wikipedia.org/wiki/Holografi